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; i
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ABSTRACT
We consider the ronlinear differential equation %%-- L(u) + f£(t).
n .

Use of Galerkin FEM with u(x, t) = v(x, t) = £ YJ(t)NJ(x). where the
~ -~ J-l -~

"3(5) are specified basfs functions, results in the implicit system of

n e
ordinary differential equations, (*) £ A,. ¥; = By(¥ys..., v ;f) =0,
: e e n

i=1, ..., n, where A1j = <N1, Nj>, Bi = <ﬁ1, L(v) + .

The method cﬁosen for solution of stiff systems (*) is a version
of Gear's method which solves the system in its implicit form. This
leads to the necessity of being able to solve.(repeatedTy) 1inear 3
algebraic equations whose coefficient matrix has the same sparse and |
banded nature as (Aij)' : i
Storage requirements for various orders of polynomial triangular ; ]

elements under compact storage mode, profile storage mode, and banded ;
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symmetric storage mode are given and compared. For large systems (*),
compact storage mode leads to significantly reduced requirements.
Consideration of the 1inear algebraic systems which arise in Gear's
method reveals that iteration should be computationally efficient. A
comparison between various solution methods ts given for a nonlinear
reactor dynamics problem. Associated with each solution method is a

different storage mode.

1. Discription of the Problem

We consider a nonlinear p.d.e. of the parabolic type,

Hali)+f xed ter (1)

with appropriate initial and boundary conditions, and L denotes spatial
operators. In accordance with a weighted residual FEM formulation, an
approximate solution v({,t) in the form

n
ulx, €) 3v(xg) 2L vy (eI (x) (2)
3=1

is assumed. In Eq. (2), Nj(g) are a set of specified interpolation

functions with local support, and the yj(t) are the solution coefficients

to be determined. Setting the residual function
R(x, t) = - Liy) - ¢ (3)

orthogonal to each of the weighting functions "1(x)' f=1, ..., n,

i.e.

<R, N1> =20, =1, ..., N




yields the system of nonlinear o.d.e.,

n .
z ]Aij Yj - Bi(YI’.o-o-an. f) = 0 (5)
J = . .

with initial conditions, where

A” = <N1, Nj> |
(6)
81 = <L(V) + f’/"‘l>
Out objective is to select a method of solution of Eq. (5) which is
efficient with respect to memory core requirement, and computational
effort. With regard to core requirement, an efficient strategy should
take into account the nature of the (Aij) matrix. If the weighting
functions have local support, A will be sparse and banded. If a Galerkin
formulation is employed, W; = Ny, and the (A‘j)matrix is symmetric. In
general the sparseness of (Aij) increases with finer mesh discretization,
as well as space dimensionality. Bandwidth and sparseness increase with
higher order polynomial interpolation elements, but fewer are required to
provide an accuracy achieved by lower order elements. The question of
which is more efficient, higher or lower order elements, is not addressed
here.

Attention is ‘given here to a stiff system arising from a FEM formu-
lation of a two dimensional nonlinear -nuclear reactor dynamics problem
[(1]. Here L(u) is given by

L(u) = -au? + bu + cay . (7)

with appropriate initial and boundary conditions. In this case, Eq.

2

(5) becomes, after an integration by parts on the A" term,
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; where
A'Ij a <N'l’ Nj> _ 1 ‘
C”k = <N, Njﬂk> { (9) ; ‘
oN. OoN oN. ©oN
A | el
Byy*<ax - *t > J .

2. Solution Techniques for the Implicit System of 0.D.E.'s

Consideration of various schemes for the solution of the implicit

system of ordinary differential equations given by Eq (5) reveals that
no matter what type of scheme is employed, it will involve the solu-
tion of a system of algebraic equations, possibly .aonlinear if (81) is
nonlinear. Use of e&en a simple scheme for explicit systems of dif-
ferential equations, e.g., Euler's method, requires repéated solution
~ of a system of linear equations with coefficient matrix (Aij) for the

;j’ given v, , ..., Yo and t. If a predictor-corrector method (or

any method involving derivatives at the new time, generally called an

i implicit numerical method) for explicit systems of differential equa-

tions is used, a second system of algebraic equations arises for-the:
dependent variables at the new time. -Because of this second system of
algebraic equations it is best to avoid having to solve (5) for
derivatives by employing an ordinary diffential equation solver
designed for implicit systems of equations.

Given that an implicit method will be employed to solve the system
(5) there are three levels of matrix storage that are required: (1)
That required by the system matrices (Aij) and'(Bi) (We are not

being specific here about the form of (81); it may involve several con-

?' stant matrices or may be a function of time); (2) That required by the




differential equation solver; and (3) That required to represent the

algebraic system of equations for vy, ..., Yo at the next time in the

- form required by the algebraic equation solver being used. The
hierarchy of storage levels is shown schematically in Figure 1, along ]

with possible options for differential equation solvers and algebraic z

equation solvers, with the preferred storage mode shown in parenthesis.

: Level 1: System Matrices: (Aij)’ (Compact)
(Bi)’ (Compact or ?)
Y
Level 2: ODE Solver: e.g. Implicit Gear (Full,
Crank-Nicolson nx?)
Y others
Level 3: Algebraic Equation Solver
‘arf"’;gf::, ~\-\\~"‘~sn.
Linear Case Nonlinear Case

. il o

Direct Methods [terative Methods , Newton's Method, = Iterative

1 ‘\\\*l (Compact) .or others leading not leading
(Banded) (Profile) (Compact) ,Ito linear systems to linear systems
. (See Linear) (Compact)
Aeaiioas b
Figure 1

It is difficult to show all the possible options and Figure 1 is not
meant to exclude any, but rather to emphasize several points. (1) The
system matrices are used only in evaluation of the left side of (5) and

" can be stored in any form, some form of compact storage being efficient.
(2) The differential equation solver will have its own requirements for

storing the solution values, past history, and auxiliary storage.

.
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(3) The choice of solution method for the algebraic equations will

~ determine the type of storage required at level 3. In some instances

the latter choice may be determined by the differential equation solver,

and could require no additional storage in some cases, but a more usual

situation will be where at least one matrix must be stored.

Because the problems in which we afe interested are typically stiff

. we were led to Gear's method. which performs well. This method was
used in a form designed for implicit systeﬁs of differential equations
[2], and is based on [3]. Gear's method is a variable order, variable
stepsize, predictor-corrector scheme. The derivatives at the new time
are approximated by a backwards difference formula, and the resulting
corrector equation is solved by a quasi-Newton's method. This leads
to repeated solution of equations of the form Jsy = p, where the :
solution &y represents incremental corrections to the solution values.

; For Eq. (5), J = (-%Aij - %%;), where h is the current setpsize and s

is a constant dependent on the current order formula being applied.
i Our version is designed to facilitate easy incorporation of what-
oo ! ever solution scheme and associated storage scheme is suitable for

these linear systems. Since the user must supply a subprogram to

evaluate the matrix J, it is then relatively simple fcr the user
to store the matrix in a form compatible with the equation solver
being used.

In our scheme, the amount of storage required at level 2 is
approximately 20 n words. Level 1 storage is dependent on the
f i probfem, and level 3 storage on the linear equation solver incor-
porated into the method. The details for a specific problem are

discussed in Section 4.
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3. Storage Schemes

The most common method of storing matrices in FEM, is the banded
storage scheme, whereby the “:ndwidth (or half bandwidth in the case
of symmetric matrices) terms are stored. Some reduction in storage is
obtained by profile (or skyline) storage. In this scheme, some'of the
Zero terms within the band are eliminated. Band and profile storage

are schematically shown in Figure 2.

! \
“ \ iy (-4 S 20
\ 3
£

/

2§ 30

Symmetric Banded Grid (R=2, 5;3. t=2) - Profile

Figure 2
For large systems, the storage allocated to zero terms by either the

band or profile scheme comprises a large fraction of the total storage.
Thus, a compact storage scheme, which stores only the non-zero coeffi-
cients of a matr1£ provides a substantial reduction in core require-
ments for large systems.

The implementation of compact storage requires two integer array
vectors, say ISTART and NAME, and a vector of the non zero coefficients,

say AA. The 1th integer entry in ISTART is the number qys where

i-1
Qs = I P, +1 (10)
i ju1 J
and Pi is the number of terms in the Jth equation (i.e. the number of
nodes connected to the jth node). In n is the number of unknowns in

the system, the length of ISTART is (n + 1). ISTART then, is a pointer

-9-
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vector whose jth term locates the initial position in the AA vector of
the contributing coefficients to the jth equation. The M x 1 NAME

vector, where

is composed of n successive vector blocks of variable length Pj: The
P
J

cients of the n x n A matrix, arranged in the same contiguous block

j integers in the jth block of NAME identify thé contributors to the
th equation. The M x 1 vector AA, contains the real non-zero coeffi-

arrangement as the NAME vector.

A comparison of the core requirements of a symmetric banded matrix
using banded, profile and compact storagé follows. To fix ideas, we
consider a simple rectangular domain with R rows of elements, and $
columns of elements. The class of triangular elements with polynomial
interpolation are considered. The formulas presented are for the case
where interior nodes are condensed out. The following notation is used.

n =~ the nu@ber of unknowns
n_ - the half bandwidth for a éymmetric matrix

- the order of polynomial interpolation

- the number of rows of elements in the rectangular grid

t
R
S - the number of columns of elements in the rectangular grid
N. - symmetric band storage

N, - profile storage

N. - compact storage

bytes per word for real numbers

%]
]

bytes per word for integer numbers

w
1]

To obtain minimum bandwidth, numbering of nodes is sequential in the

vertical direction if R < S, and vice versa if S > R, for profile and

-10- | 4




banded storage. The numbering sequence for compact storage is irrele-

vant. For an R x S rectangular grid the number of unknowns is
i
n=RS(3t - 2) + (R+S)(2-2t) + (t-1) (12) t
? For very large systems, i.e. RS > (R + S),
n < RS(3t - 2) (13)
The core requirement for each of the storage schemes, for R < S, is
4 a) banded storage
/S

Ng = ann, (14) i

where, 13

a ng=3Rt-2R-t+3 (15) :
For very large systems J

‘1

Ng = aR’S for t = 1 (16) '

Ng = 16aR’S for t = 2
Ng T 490R%S for t = 3 '
b) profile storaée
Np = Ng - aQ (17) 4
where f
Q{8 2%“'”t2+(R-2)(R-1)(t-1)t (s -1) |
; (18) |
(R - 2)(t=1)t(s - 1) , [2R(t - 1) + 1I[2R(¢ - 1) + 2Ls _ 5 |
: g 2
i For very large systems
Np < aR%s t=1
i Np T 120R%S t=2 (19)
: . N = 35aR’s t =3




T

¢) compact storage
Nc-an+e(ﬂ+n*l) (20)

where

M = RS(15t2 - 6t - 2) + (R + S)(-14t2 + 8¢t + 2) (21)
+ (13t2 - 10t - 1)
For very large systems

-

N, = RS(7a + 88) st =1
NC < RS(46a + 508) t=2 } (22)
N TRS(115a +1228)  t=3 |

d) Comparison of Ng» Nj and N, for large systems.

It is noted that ba:ded and profile storage are proportional
to RZS, while compact storage is proportional to RS. The following
formulas compare the relative core requirements for banded, profile
and compact storage schemes.

i) Savings of profile compared to banded storage

0.0 t=1

N, =N -

s~ M zJos ts2 (23)
" 0.29 t=3

§1) Savings of compact compared to profile

(1.L1_88
R“aR  t=1
NN :{ 0 W
Ny = . (24)
23 122
SRS B - Rk




To fix ideas, say 8 = %a, then for large systems

i
R t=1
. e tom to
LS -~ ;
Np i g e %%h t=2 (25) ;
\1-;%% t=3 (

It should be noted from Eq. (24), that banded and profile storage is
less than compact storage for small systems.' For example, in the case

of t = 1, banded and profile storage is more efficient when 1 < (%-+ g%),

i.e., when R < 11 in the case t = 1 and 8 = a/2.

4. Numerical Results for an Example ProB]em

We consider the example given by Eq. (7), resulting in the ordinary

differential equations (8). The domain was a rectangle which was

discretized with 11 rows and 12 columns, giving 132 nodes and 220 ele-

ments. There were 22 boundary nodes (fixed values). Using linear
triangular elements, a system of 110 differential equations was obtained.

The three dimensional array (cijk) réquired special consideration for

fts storage. We noted that AN non
2. PCiaavern ® T I Disnvey
" gal kel ijk'i'k j=1 k=j ijk'j'k
where
C13x e
5 (26)
13k c +C J<k
. ijk ikJ

Because of the regular rectangular grid employed here, each

equation contains no more than 7 tems. To facilitate "indling of the

nonlinear term, seven entries were allotted to each block of the NAME

-13- ; 3
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array (i.e. Py =7 for all j). For equations with q contributing terms,

where q < 7, there were (7 - q) null entries in the NAME array. For the
nonlinear term given by Eq. (26), the number of non zero coefficients in
any equation is no more than 28, the number of combinations of seven
nodes taken two at a time (i.e. cijk + cikJ' Jj < k) plus the seven
diagonal terms ciJJ‘ Thus, the nonlinear term requires 28n words.

Each of the (Aij) and (Bij) matrices requi;es Tn Qords. Total level 1
storage required is 42na bytes plus 7ng bytes for the NAME array; the
ISTART array is not required for this modified compact storage scheme.

The J matrix that arises in this. problem is (f;.«1j - bAyj + CBy 4

n g
2‘£1cijkyk)' The matrix can be stored in compact form using the same
k= :

NAME array as for (AiJ)‘

Three different 1inear equation solvers were considered, along with

their associated storage schemes for J. The first was the IMSL pair
LUDAPB/LUELPB for matrices in symmetric banded storage form. The half
bandwidth for our sample problem was 12, thus in this case 12n = 1320
words were requir;d. No additional working storage is required by
LUDAPB since it performs an in-place decomposition of J. In the
general case, storage requirements for the J matrix are those for a
symmetric banded matrix as given by Egs. (18) and (15).

The second equation solver used was an fterative method, SOR, for
which compact storage was used. This required 7n = 770 words. In
general, storage requirements for the J matrix in compact form are
given by Eq's (20 and (21). SOR, of course, does not require any
additional working storage.

The third equation solver considered was the symmetric form of

i .

SP——
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the Yale Sparse Matrix Package [4]. This required J to be stored in a
symmetric‘form of the compact storage described in Section 3, and for
‘our case required 399 words to store J, plus 510 words to store the
NAME and ISTART arrays. In addition, approximately 1500 words were
required to store the decomposition of J, along with the NAME and
ISTART arrays. In general, storage for the Yale Sparse Matrix Package
should be much 1ess than that for the profile scheme given by

Eqs (17) and (18), since a reordering of rows/columns to minimize
fi11-in during the matrix factorization is done.

The particular problem we have used as an example was designed to
illustrate the feasibility of using the three different storage/solution
schemes, and the computational times and storage here are not likely
to be representative of what might happen in larger problems. In
particular, the relatively small bandwidth favors the symmetric band
storage mode in computational effort..

The SCR method must converge very rapidly to be competitive in
computational effort, since about 7n operations are required per
iteration, whereas about Znsn (after factorization of J) are required
for solution with symmetric banded matrices of half bandwidth ng.
Somewhat fewer operations are required for the Yale Sparse Matrix
Package. For our case, SOR requires more computational effort than
direct methods when the number of iterations for convergence exceeds
4 (1.e. when 7nNI > Znsn. where ng is 12 and NI is the number of
iterations), a1though this is offset by the need to factor J each tim:
it is recomputed. Since the solution 6y of the system Jay = p
method increments for the corrector equation, the accuracy requirements

are Tow, and SOR requires few iterations for convergence. The results

-15-
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of our example should be observed with the above considerations in mind.

A1l times were obtained on the IBM 360 model 67, using the Fortran H

compiler. : ; i |

rms accuracy : 1
required in WDAPB/LUELP3 - YALE SOR _,
Gears Method _ ;

. 3 A : 30.0 34.8 26.2

>

.01 48.7 47.1 50.1

.001 66.6 71.0 §7.0
Table 1

For systems with large bandwidths, we expect the computational
effort required for both the Yale Sparse Matrix Package and SOR to be

superior to the symmetric banded scheme.
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